Battle of Water Demand Forecasting
Alvisi S, Franchini M, Marsili V, Mazzoni F, Salomons E, Housh M, Abokifa A, Arsova K, Ayyash F, Bae H, Barreira R, et al. (2025)
Journal of Water Resources Planning and Management 151(10).
PhD Student
fhinder@techfak.uni-bielefeld.deRoom: CITEC 2-217
Fabian Hinder is a Ph.D. student in the Machine Learning group. He received his Master’s degree in pure mathematics from Bielefeld University in 2018. Since 2019, he has been a Ph.D. student at the Center for Cognitive Interaction Technology. His research interests cover learning in non-stationary environments, concept drift detection, statistical learning theory, explainable AI, and the foundations of machine learning.
Battle of Water Demand Forecasting
Alvisi S, Franchini M, Marsili V, Mazzoni F, Salomons E, Housh M, Abokifa A, Arsova K, Ayyash F, Bae H, Barreira R, et al. (2025)
Journal of Water Resources Planning and Management 151(10).
Compression-based $k$NN for Class Incremental Continual Learning
Vaquet V, Vaquet J, Hinder F, Hammer B (2025)
In: ESANN 2025 proceesdings. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com: 45-50.
Adversarial Attacks for Drift Detection
Hinder F, Vaquet V, Hammer B (2025)
In: ESANN 2025 proceesdings. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com: 555-560.
Roberts J (I), Hinder F, Vaquet V, Schulz A, Hammer B (2025)
In: ESANN 2025 proceedings. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com: 561-566.
Localizing of Anomalies in Critical Infrastructure using Model-Based Drift Explanations
Vaquet V, Hinder F, Vaquet J, Lammers K, Quakernack L, Hammer B (2024)
In: 2024 International Joint Conference on Neural Networks (IJCNN). IEEE: 1-8.
Challenges, Methods, Data–A Survey of Machine Learning in Water Distribution Networks
Vaquet V, Hinder F, Artelt A, Ashraf I, Strotherm J, Vaquet J, Brinkrolf J, Hammer B (2024)
In: Artificial Neural Networks and Machine Learning – ICANN 2024. 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, Part IX. Wand M, Malinovská K, Schmidhuber J, Tetko IV (Eds); Lecture Notes in Computer Science. Cham: Springer Nature Switzerland: 155-170.
FairGLVQ: Fairness in Partition-Based Classification
Störck F, Hinder F, Brinkrolf J, Paaßen B, Vaquet V, Hammer B (2024)
In: Proceedings of the 15th International Workshop on Self-Organizing Maps (WSOM 2024). Villmann T, Kaden M, Geweniger T, Schleif F-M (Eds); Cham: Springer Nature Switzerland: 141-151.
Hinder F, Vaquet V, Hammer B (2024)
Frontiers in Artificial Intelligence 7.
Self-Supervised Learning from Incrementally Drifting Data Streams
Vaquet V, Vaquet J, Hinder F, Malialis K, Panayiotou C, Polycarpou M, Hammer B (2024)
In: ESANN 2024 proceesdings. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com: 431-436.
On the Fine Structure of Drifting Features
Hinder F, Vaquet V, Hammer B (2024)
In: ESANN 2024 proceesdings. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com: 63-68.
Causes of Rejects in Prototype-based Classification Aleatoric vs. Epistemic Uncertainty
Brinkrolf J, Vaquet V, Hinder F, Hammer B (2024)
In: ESANN 2024 proceesdings. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com: 191-196.
A Remark on Concept Drift for Dependent Data
Hinder F, Vaquet V, Hammer B (2024)
In: Advances in Intelligent Data Analysis XXII. 22nd International Symposium on Intelligent Data Analysis, IDA 2024, Stockholm, Sweden, April 24–26, 2024, Proceedings, Part I. Miliou I, Piatkowski N, Papapetrou P (Eds); Lecture Notes in Computer Science. Cham: Springer Nature Switzerland: 77-89.
A Water Futures Approach on Water Demand Forecasting with Online Ensemble Learning
Zanutto D, Michalopoulos C, Chatzistefanou G-A, Vamvakeridou-Lyroudia L, Tsiami L, Glynis K, Samartzis P, Hermes L, Hinder F, Vaquet J, Vaquet V, et al. (2024)
In: The 3rd International Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry (WDSA/CCWI 2024). Basel Switzerland: MDPI: 60.
Feature-based analyses of concept drift
Hinder F, Vaquet V, Hammer B (2024)
Neurocomputing 600: 127968.
Hinder F, Vaquet V, Hammer B (2024)
Frontiers in Artificial Intelligence 7: 1330257.
Semantic Properties of Cosine Based Bias Scores for Word Embeddings
Schroeder S, Schulz A, Hinder F, Hammer B (2024)
In: Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods. Vol. 1. Setúbal, Portugal: SCITEPRESS - Science and Technology Publications: 160-168.
Vaquet V, Hinder F, Hammer B (2024)
In: Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods ICPRAM. Volume 1. SCITEPRESS - Science and Technology Publications: 296-303.
On the Change of Decision Boundary and Loss in Learning with Concept Drift
Hinder F, Vaquet V, Brinkrolf J, Hammer B (2023)
In: Advances in Intelligent Data Analysis XXI. 21st International Symposium on Intelligent Data Analysis, IDA 2023, Louvain-la-Neuve, Belgium, April 12–14, 2023, Proceedings. Crémilleux B, Hess S, Nijssen S (Eds); Lecture Notes in Computer Science, 13876. Cham: Springer : 182-194.
On the Hardness and Necessity of Supervised Concept Drift Detection
Hinder F, Vaquet V, Brinkrolf J, Hammer B (2023)
In: Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods ICPRAM. Vol. 1. De Marsico M, Sanniti di Baja G, Fred A (Eds); Setúbal: SCITEPRESS - Science and Technology Publications: 164-175.
Model-based explanations of concept drift
Hinder F, Vaquet V, Brinkrolf J, Hammer B (2023)
Neurocomputing: 126640.
Feature Selection for Concept Drift Detection
Hinder F, Hammer B (2023)
In: ESANN 2023 Proceedings. Verleysen M (Ed); .
Contrasting Explanations for Understanding and Regularizing Model Adaptations
Artelt A, Hinder F, Vaquet V, Feldhans R, Hammer B (2022)
Neural Processing Letters 55: 5273–5297.
Localization of Concept Drift: Identifying the Drifting Datapoints
Hinder F, Vaquet V, Brinkrolf J, Artelt A, Hammer B (2022)
In: 2022 International Joint Conference on Neural Networks (IJCNN). IEEE: 1-9.
Federated learning vector quantization for dealing with drift between nodes
Vaquet V, Hinder F, Brinkrolf J, Menz P, Seiffert U, Hammer B (Accepted)
Presented at the 30th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2022, Bruges.
Localization of Concept Drift: Identifying the Drifting Datapoints
Hinder F, Vaquet V, Brinkrolf J, Artelt A, Hammer B (2022) .
Suitability of Different Metric Choices for Concept Drift Detection
Hinder F, Vaquet V, Hammer B (2022)
In: Advances in Intelligent Data Analysis XX. 20th International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France, April 20–22, 2022, Proceedings. Bouadi T, Fromont E, Hüllermeier E (Eds); Lecture Notes in Computer Science. Cham: Springer International Publishing: 157-170.
Contrastive Explanations for Explaining Model Adaptations
Artelt A, Hinder F, Vaquet V, Feldhans R, Hammer B (2021)
In: Advances in Computational Intelligence. 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part I. Rojas I, Joya G, Catala A (Eds); Lecture Notes in Computer Science. Cham: Springer : 101-112.
Fast Non-Parametric Conditional Density Estimation using Moment Trees
Hinder F, Vaquet V, Brinkrolf J, Hammer B (2021)
IEEE Computational Intelligence Magazine.
A Shape-Based Method for Concept Drift Detection and Signal Denoising
Hinder F, Brinkrolf J, Vaquet V, Hammer B (2021)
In: 2021 IEEE Symposium Series on Computational Intelligence (SSCI) Proceedings. Piscataway, NJ: IEEE: 01-08.
Fast Non-Parametric Conditional Density Estimation using Moment Trees
Hinder F, Vaquet V, Brinkrolf J, Hammer B (2021)
In: 2021 IEEE Symposium Series on Computational Intelligence (SSCI) Proceedings. Piscataway, NJ: IEEE: 1-7.
Online Learning on Non-Stationary Data Streams for Image Recognition using Deep Embeddings
Vaquet V, Hinder F, Vaquet J, Brinkrolf J, Hammer B (2021)
IEEE Symposium Series on Computational Intelligence: 1-7.
Evaluating Robustness of Counterfactual Explanations
Artelt A, Vaquet V, Velioglu R, Hinder F, Brinkrolf J, Schilling M, Hammer B (2021)
In: 2021 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway, NJ: IEEE: 01-09.
Concept Drift Segmentation via Kolmogorov Trees
Hinder F, Hammer B (Accepted)
In: Proceedings of the ESANN, 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Verleysen M (Ed); .
Hinder F, Artelt A, Hammer B (2020)
In: Proceedings of the 37th International Conference on Machine Learning.
Schulz A, Hinder F, Hammer B (2020)
In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, {IJCAI-20}.
Pfannschmidt L, Jakob J, Hinder F, Biehl M, Tino P, Hammer B (2020)
Neurocomputing.