Hermes L, Artelt A, Vrachimis SG, Polycarpou MM, Hammer B (2025)
SN Computer Science 6(5): 522.
postdoc
aartelt@techfak.uni-bielefeld.de +49 521 106-12147Room: CITEC 2-109
André Artelt studied B.Sc. Congnitive Informatics (2017) and M.Sc. Intelligent Systems (2019) at Bielefeld University.
Since 2019 he is a researcher in the Machine Learning group at Bielefeld University. Prior to that he spent some time in industry working in the software development department at Schüco International KG (2013-2019).
His research is about Trustworthy AI in Critical Domains, with a special focus on eXplainable AI (XAI) — in particular on contrasting and counterfactual explanations. Besides fundamental research, he also works on applications of (X)AI in domains such as water distribution systems, transportation, and decision support systems for business owners.
Hermes L, Artelt A, Vrachimis SG, Polycarpou MM, Hammer B (2025)
SN Computer Science 6(5): 522.
Szczuka JM, Horstmann AC, Szymczyk N, Strathmann C, Artelt A, Mavrina L, Krämer N (2024)
In: NordiCHI '24: Proceedings of the 13th Nordic Conference on Human-Computer Interaction. Association for Computing Machinery (Ed); New York, USA.
Challenges, Methods, Data–A Survey of Machine Learning in Water Distribution Networks
Vaquet V, Hinder F, Artelt A, Ashraf I, Strotherm J, Vaquet J, Brinkrolf J, Hammer B (2024)
In: Artificial Neural Networks and Machine Learning – ICANN 2024. 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, Part IX. Wand M, Malinovská K, Schmidhuber J, Tetko IV (Eds); Lecture Notes in Computer Science. Cham: Springer Nature Switzerland: 155-170.
EPyT-Flow: A Toolkit for Generating Water DistributionNetwork Data
Artelt A, Kyriakou MS, Vrachimis SG, Eliades DG, Hammer B, Polycarpou MM (2024)
Journal of Open Source Software 9(103): 7104.
Artelt A, Gregoriades A (2024)
Decision Support Systems 182: 114249.
Contrasting Explanations in Machine Learning. Efficiency, Robustness & Applications
Artelt A (2024)
Bielefeld: Universität Bielefeld.
Spatial Graph Convolution Neural Networks for Water Distribution Systems
Ashraf MI, Hermes L, Artelt A, Hammer B (2023)
In: Advances in Intelligent Data Analysis XXI. 21st International Symposium on Intelligent Data Analysis, IDA 2023, Louvain-la-Neuve, Belgium, April 12–14, 2023, Proceedings. Crémilleux B, Hess S, Nijssen S (Eds); Lecture Notes in Computer Science. Cham: Springer Nature Switzerland: 29-41.
Kuhl U, Artelt A, Hammer B (2023)
In: Explainable Artificial Intelligence. First World Conference, xAI 2023, Lisbon, Portugal, July 26–28, 2023, Proceedings, Part III. Longo L (Ed); Communications in Computer and Information Science. Cham: Springer Nature Switzerland: 280-300.
Interpretable SAM-kNN Regressor for Incremental Learning on High-Dimensional Data Streams
Jakob J, Artelt A, Hasenjäger M, Hammer B (2023)
Applied Artificial Intelligence 37(1): 2198846.
Kuhl U, Artelt A, Hammer B (2023)
Frontiers in Computer Science 5: 1087929.
"Why Here and not There?": Diverse Contrasting Explanations of Dimensionality Reduction
Artelt A, Schulz A, Hammer B (2023)
In: Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods. Setúbal, Portugal: SCITEPRESS - Science and Technology Publications: 27-38.
Unsupervised Unlearning of Concept Drift with Autoencoders
Artelt A, Malialis K, Panayiotou CG, Polycarpou MM, Hammer B (2023)
In: 2023 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE: 703-710.
"I do not know! but why?"- Local model-agnostic example-based explanations of reject
Artelt A, Visser R, Hammer B (2023)
Neurocomputing 558: 126722.
Adversarial Attacks on Leakage Detectors in Water Distribution Networks
Stahlhofen P, Artelt A, Hermes L, Hammer B (2023)
In: Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part II. Rojas I, Joya G, Catala A (Eds); Lecture Notes in Computer Science. Cham: Springer Nature Switzerland: 451-463.
Contrasting Explanations for Understanding and Regularizing Model Adaptations
Artelt A, Hinder F, Vaquet V, Feldhans R, Hammer B (2022)
Neural Processing Letters 55: 5273–5297.
Kuhl U, Artelt A, Hammer B (2022)
In: 2022 ACM Conference on Fairness, Accountability, and Transparency. New York, NY, USA: ACM: 2125-2137.
“Even if …” – Diverse Semifactual Explanations of Reject
Artelt A, Hammer B (2022)
In: 2022 IEEE Symposium Series on Computational Intelligence (SSCI). Ishibuchi H (Ed); Piscataway, NJ: IEEE: 854-859.
Explainable Artificial Intelligence for Improved Modeling of Processes
Velioglu R, Göpfert JP, Artelt A, Hammer B (2022)
In: Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings. Yin H, Camacho D, Tino P (Eds); Lecture Notes in Computer Science, 13756. Cham: Springer International Publishing: 313-325.
SAM-kNN Regressor for Online Learning in Water Distribution Networks
Jakob J, Artelt A, Hasenjäger M, Hammer B (2022)
In: Artificial Neural Networks and Machine Learning – ICANN 2022. 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6–9, 2022, Proceedings, Part III. Pimenidis E, Angelov P, Jayne C, Papaleonidas A, Aydin M (Eds); Lecture Notes in Computer Science, 13531. Cham: Springer Nature : 752-762.
Explaining Reject Options of Learning Vector Quantization Classifiers
Artelt A, Brinkrolf J, Visser R, Hammer B (2022)
In: Proceedings of the 14th International Joint Conference on Computational Intelligence. SCITEPRESS - Science and Technology Publications: 249-261.