Visualizing and Improving 3D Mesh Segmentation with DeepView
Mazur A, Roberts J (I), Leins D, Schulz A, Hammer B (2024)
In: ESANN 2024 proceedings. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com: 649-654.
postdoc
aschulz@techfak.uni-bielefeld.de +49 521 106-12130Room: CITEC 2-228
Alexander Schulz defended his Ph.D. thesis with the title ‘Discriminative Dimensionality Reduction: Variations, Applications, Interpretations’ at CITEC, Bielefeld University in early 2017. Currently, he is working as a post doc in the Machine Learning group at Bielefeld University. He has collaborated with groups from the Aalto University in Finland, the University of Groningen in the Netherlands, the University of Namur in Belgium and the Medical University of Vienna in Austria. His scientific contributions are in the areas of dimensionality reduction for data visualization, model interpretability, transfer learning and myoelectric control.
Visualizing and Improving 3D Mesh Segmentation with DeepView
Mazur A, Roberts J (I), Leins D, Schulz A, Hammer B (2024)
In: ESANN 2024 proceedings. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com: 649-654.
Noise Robust One-Class Intrusion Detection on Dynamic Graphs
Liuliakov A, Schulz A, Hermes L, Hammer B (2024)
In: ESANN 2024 proceedings. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com: 363-368.
The SAME score: Improved cosine based measure for semantic bias
Schroeder S, Schulz A, Hammer B (2024)
In: 2024 International Joint Conference on Neural Networks (IJCNN). IEEE: 1-8.
Semantic Properties of Cosine Based Bias Scores for Word Embeddings
Schroeder S, Schulz A, Hinder F, Hammer B (2024)
In: Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods. Vol. 1. Setúbal, Portugal: SCITEPRESS - Science and Technology Publications: 160-168.
Grimmelsmann N, Mechtenberg M, Vieth M, Schulz A, Hammer B, Schneider A (2024)
In: Proceedings of the 17th International Joint Conference on Biomedical Engineering Systems and Technologies. Setúbal, Portugal: SCITEPRESS - Science and Technology Publications: 611-621.
Nelkner J, Huang L, Lin TW, Schulz A, Osterholz B, Henke C, Blom J, Pühler A, Sczyrba A, Schlüter A (2023)
Environmental Microbiome 18(1): 26.
Metric Learning with Self-Adjusting Memory for Explaining Feature Drift
Kummert J, Schulz A, Hammer B (2023)
SN Computer Science 4(4): 376.
Generating Cardiovascular Data to Improve Training of Assistive Heart Devices
Kummert J, Schulz A, Feldhans R, Habigt M, Stemmler M, Kohler C, Abel D, Rossaint R, Hammer B (2023)
In: 2023 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE: 1292-1297.
Data Augmentation for Cardiovascular Time Series Data Using WaveNet
Feldhans R, Schulz A, Kummert J, Habigt M, Stemmler M, Kohler C, Abel D, Rossaint R, Hammer B (2023)
In: 2023 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE: 836-841.
So Can We Use Intrinsic Bias Measures or Not?
Schroeder S, Schulz A, Kenneweg P, Hammer B (2023)
In: Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods. Setúbal, Portugal: SCITEPRESS - Science and Technology Publications: 403-410.
Debiasing Sentence Embedders Through Contrastive Word Pairs
Kenneweg P, Schroeder S, Schulz A, Hammer B (2023)
In: Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods. Setúbal, Portugal: SCITEPRESS - Science and Technology Publications: 205-212.
"Why Here and not There?": Diverse Contrasting Explanations of Dimensionality Reduction
Artelt A, Schulz A, Hammer B (2023)
In: Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods. Setúbal, Portugal: SCITEPRESS - Science and Technology Publications: 27-38.
Extending Drift Detection Methods to Identify When Exactly the Change Happened
Vieth M, Schulz A, Hammer B (2023)
In: Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I. Rojas I, Joya G, Catala A (Eds); Lecture Notes in Computer Science. Cham: Springer Nature Switzerland: 92-104.
One-Class Intrusion Detection with Dynamic Graphs
Liuliakov A, Schulz A, Hermes L, Hammer B (2023)
In: Artificial Neural Networks and Machine Learning – ICANN 2023. 32nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece, September 26–29, 2023, Proceedings, Part IV. Iliadis L, Papaleonidas A, Angelov P, Jayne C (Eds); Lecture Notes in Computer Science. Cham: Springer Nature Switzerland: 537-549.
Schroeder S, Schulz A, Tarakanov I, Feldhans R, Hammer B (2023)
In: Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I. Rojas I, Joya G, Catala A (Eds); Lecture Notes in Computer Science. Cham: Springer Nature Switzerland: 134-145.
Intelligent Learning Rate Distribution to Reduce Catastrophic Forgetting in Transformers
Kenneweg P, Schulz A, Schroeder S, Hammer B (2022)
In: Intelligent Data Engineering and Automated Learning – IDEAL 2022. 23rd International Conference, IDEAL 2022, Manchester, UK, November 24–26, 2022, Proceedings. Yin H, Camacho D, Tino P (Eds); Lecture Notes in Computer Science, 13756. Cham: Springer International Publishing: 252-261.
Reservoir Memory Machines as Neural Computers
Paaßen B, Schulz A, C. Stewart T, Hammer B (2022)
IEEE Transactions on Neural Networks and Learning Systems 33(6): 2575–2585.
BERT WEAVER: Using WEight AVERaging to Enable Lifelong Learning for Transformer-based Models
Langnickel L, Schulz A, Hammer B, Fluck J (2022)
arXiv.
Paaßen B, Schulz A, Hammer B (2021)
Neurocomputing 470: 352-364.
Reservoir Memory Machines as Neural Computers
Paassen B, Schulz A, Stewart TC, Hammer B (2021)
IEEE Transactions on Neural Networks and Learning Systems: 1-11.
Efficient Reject Options for Particle Filter Object Tracking in Medical Applications
Kummert J, Schulz A, Redick T, Ayoub N, Modabber A, Abel D, Hammer B (2021)
Sensors 21(6): 2114.
Schulz A, Hinder F, Hammer B (2020)
In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, {IJCAI-20}.
Paaßen B, Schulz A (2020)
In: Proceedings of the 28th European Symposium on Artificial Neural Networks (ESANN 2020). Verleysen M (Ed); Bruges: i6doc: 567-572.
The composition of the human ribosome varies significantly in different normal and malignant tissues
Panda A, Yadav A, Yeerna H, Singh A, Biehl M, Lux M, Schulz A, Klecha T, Doniach S, Khiabanian H, Ganesan S, et al. (2020)
In: Proceedings: AACR Annual Meeting 2020. Cancer Research, 80(16_ Supplement). Philadelphia: Amer Assoc Cancer Research.
Panda A, Yadav A, Yeerna H, Singh A, Biehl M, Lux M, Schulz A, Klecha T, Doniach S, Khiabanian H, Ganesan S, et al. (2020)
Nucleic acids research.
Counteracting Electrode Shifts in Upper-Limb Prosthesis Control via Transfer Learning
Prahm C, Schulz A, Paaßen B, Schoisswohl J, Kaniusas E, Dorffner G, Hammer B, Aszmann O (2019)
IEEE Transactions on Neural Systems and Rehabilitation Engineering 27(5): 956-962.
Transfer Learning of Complex Motor Skills on the Humanoid Robot Affetto
Schulz A, Queißer J, Ishihara H, Asada M (2018)
Presented at the International Conference on Development and Learning and on Epigenetic Robotics 2018 (ICDL-EPIROB2018), Tokyo (In Press).
Expectation maximization transfer learning and its application for bionic hand prostheses
Paaßen B, Schulz A, Hahne J, Hammer B (2018)
Neurocomputing 298: 122-133.
Linear Supervised Transfer Learning for the Large Margin Nearest Neighbor Classifier
Berger K, Schulz A, Paaßen B, Hammer B (2018)
Presented at the SSCI CIDM 2017.
Linear Supervised Transfer Learning Toolbox
Paaßen B, Schulz A (2017)
Bielefeld University.
An EM transfer learning algorithm with applications in bionic hand prostheses
Paaßen B, Schulz A, Hahne J, Hammer B (2017)
In: Proceedings of the 25th European Symposium on Artificial Neural Networks (ESANN 2017). Verleysen M (Ed); Bruges: i6doc.com: 129-134.
Discriminative dimensionality reduction: variations, applications, interpretations
Schulz A (2017)
Bielefeld: Universität Bielefeld.
Efficient Kernelization of Discriminative Dimensionality Reduction
Schulz A, Brinkrolf J, Hammer B (2017)
Neurocomputing 268(SI): 34-41.
Echo State Networks as Novel Approach for Low-Cost Myoelectric Control
Prahm C, Schulz A, Paaßen B, Aszmann O, Hammer B, Dorffner G (2017)
In: Proceedings of the 16th Conference on Artificial Intelligence in Medicine (AIME 2017). ten Telje A, Popow C, Holmes JH, Sacchi L (Eds); Lecture Notes in Computer Science, 10259. Springer: 338--342.
Discriminative Dimensionality Reduction in Kernel Space
Schulz A, Hammer B (2016)
In: ESANN2016 Proceedings. 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium,27-29 April 2016. i6doc.com.
Linear Supervised Transfer Learning for Generalized Matrix LVQ
Paaßen B, Schulz A, Hammer B (2016)
In: Proceedings of the Workshop New Challenges in Neural Computation 2016. Hammer B, Martinetz T, Villmann T (Eds); Machine Learning Reports(4). 11-18.
Transfer Learning for Rapid Re-calibration of a Myoelectric Prosthesis after Electrode Shift
Prahm C, Paaßen B, Schulz A, Hammer B, Aszmann O (2016)
In: Converging Clinical and Engineering Research on Neurorehabilitation II: Proceedings of the 3rd International Conference on NeuroRehabilitation (ICNR2016). Ibáñez J, Gonzáles-Vargas J, Azorín JM, Akay M, Pons JL (Eds); Springer: 153--157.
Parametric nonlinear dimensionality reduction using kernel t-SNE
Gisbrecht A, Schulz A, Hammer B (2015)
Neurocomputing 147: 71-82.
Inferring Feature Relevances From Metric Learning
Schulz A, Mokbel B, Biehl M, Hammer B (2015)
In: 2015 IEEE Symposium Series on Computational Intelligence. Piscataway, NJ: IEEE.
Using Discriminative Dimensionality Reduction to Visualize Classifiers
Schulz A, Gisbrecht A, Hammer B (2015)
Neural Processing Letters 42(1): 27-54.
Visualization of Regression Models Using Discriminative Dimensionality Reduction
Schulz A, Hammer B (2015)
In: Computer Analysis of Images and Patterns. Lecture Notes in Computer Science, 9257. Cham: Springer Science + Business Media: 437-449.
Unsupervised Dimensionality Reduction for Transfer Learning
Blöbaum P, Schulz A, Hammer B (2015)
In: Proceedings. 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Verleysen M (Ed); Louvain-la-Neuve: Ciaco: 507-512.
Discriminative dimensionality reduction for regression problems using the Fisher metric
Schulz A, Hammer B (2015)
In: 2015 International Joint Conference on Neural Networks (IJCNN). Institute of Electrical & Electronics Engineers (IEEE): 1-8.
Towards Dimensionality Reduction for Smart Home Sensor Data
Mokbel B, Schulz A (2015)
In: Proceedings of the Workshop New Challenges in Neural Computation (NC² 2015). Hammer B, Martinetz T, Villmann T (Eds); Machine Learning Reports(3). 41-48.
Metric Learning in Dimensionality Reduction
Schulz A, Hammer B (2015)
In: Proceedings of the International Conference on Pattern Recognition Applications and Methods. Scitepress: 232-239.
Valid interpretation of feature relevance for linear data mappings
Frenay B, Hofmann D, Schulz A, Biehl M, Hammer B (2014)
In: 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). Piscataway, NJ: Institute of Electrical & Electronics Engineers (IEEE): 149-156.
Transfer Learning without given Correspondences
Bloebaum P, Schulz A (2014)
In: Proceedings of the Workshop New Challenges in Neural Computation (NC² 2014). Hammer B, Martinetz T, Villmann T (Eds); Machine Learning Reports. 42-51.
Discriminative Dimensionality Reduction for the Visualization of Classifiers
Gisbrecht A, Schulz A, Hammer B (2014)
In: Pattern Recognition Applications and Methods. Advances in Intelligent Systems and Computing, 318. Cham: Springer Science + Business Media: 39-56.
Relevance learning for dimensionality reduction
Schulz A, Gisbrecht A, Hammer B (2014)
In: ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Verleysen M (Ed); Bruges, Belgium: i6doc.com: 165-170.
Applications of discriminative dimensionality reduction
Hammer B, Gisbrecht A, Schulz A (2013)
In: Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods. SCITEPRESS: 33-41.
Using Nonlinear Dimensionality Reduction to Visualize Classifiers
Schulz A, Gisbrecht A, Hammer B (2013)
In: Advances in computational intelligence. Proceedings. Vol 1. Rojas I, Joya G, Gabestany J (Eds); Lecture Notes in Computer Science, 7902. Springer: 59-68.
Learning the Appropriate Model Population Structures for Locally Weighted Regression
Vukanovicz S, Schulz A, Haschke R, Ritter H (2013)
In: Workshop New Challenges in Neural Computation 2013. Machine Learning Reports, 2013(02). Bielefeld: Universität Bielefeld: 87.
Classifier inspection based on different discriminative dimensionality reductions
Schulz A, Gisbrecht A, Hammer B (2013)
In: Workshop NC^2 2013. TR Machine Learning Reports: 77-86.
How to visualize a classifier?
Schulz A, Gisbrecht A, Bunte K, Hammer B (2012)
In: Proceedings of the Workshop - New Challenges in Neural Computation 2012. Machine Learning Reports: 73-83.
How to Visualize Large Data Sets?
Hammer B, Gisbrecht A, Schulz A (2012)
Presented at the Workshop Advances in Self-Organizing Maps (WSOM), Santiago, Chile.